Abstract

The aim of this study was to develop, evaluate and compare extended release mini-matrices based on metoprolol tartrate (MPT) and either glyceryl behenate (GB) or glyceryl palmitostearate (GPS). Mini-matrices were produced by three different techniques: hot melt extrusion, compression of melt granulates and prilling. Hot-melt extrusion and compression of granules obtained from melted material proved to be reliable, robust and reproducible techniques with aim of obtaining extended release matrices. Prilling tended to be susceptible to increased melt viscosity. Direct compression was not applicable for mini-matrix production due to poor powder flow. In general MPT release from all matrices was affected by its loading and the size of the units/particles. Processing of GB–MPT mixtures by different techniques did not lead to different drug release rates and patterns, while in case of GPS differently obtained matrices provided diverse MPT release outcomes. Matrices based on GB tended to have higher porosity compared to ones composed of GPS and thus most of the GB-based formulations showed faster drug delivery. FT-IR analysis revealed no interactions between primary components used for matrix production and Raman mapping outlined uniform MPT distribution throughout the units. DSC and X-ray studies revealed significant changes in the crystallinity of glycerides after storage under room conditions (GPS samples) and at increased temperature (GB and GPS samples), which was correlated to the changes seen in drug release rate and pattern after storage. Media composition in general tended to insignificantly affect GB matrices, while in case of GPS matrices increasing the pH and presence of biorelevant compounds induced faster drug release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.