Abstract

Paddy soil is a key area of methylmercury (MeHg) production and is dominated by fluctuating redox conditions following rice plant growth or rice-wheat rotation planting in eastern and southern Asia. The role of organic matter in the formation of MeHg under these biogeochemical redox cycles remains poorly understood, especially in certain mercury (Hg)-contaminated paddy soils. Here, we provide a detailed understanding of the formation of MeHg and its accumulation in crops (i.e., wheat and rice) in rice-wheat rotation systems under straw return. Two series of experiments, pot and microcosm experiments, were performed using Hg-contaminated paddy soil with 1% (w/w) wheat or rice straw addition under aerobic or anoxic conditions. The results showed that straw amendments increased MeHg levels in wheat (by 225%) and rice (by 20%) grains, most likely due to the elevated soil MeHg following straw amendment. Microcosm experiments further confirmed that fresh straw-derived organic matter enhances MeHg net production in soil through an overall increase in the activity of sulfate-reducing bacteria (SRB), particularly under anoxic conditions. Our study clearly demonstrated that straw amendment enhanced MeHg accumulation in wheat and rice grains and highlighted that straw return in Hg-contaminated soils may increase the health risk of MeHg exposure to local residents via crop consumption. Thus, some guidance should be provided for crop residue return in rice-wheat rotation system farming practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call