Abstract

BackgroundEpigenome-wide association studies (EWAS) have been widely applied to identify methylation CpG sites associated with human disease. To date, the Infinium MethylationEPIC array (EPIC) is commonly used for high-throughput DNA methylation profiling. However, the EPIC array covers only 30% of the human methylome. Methylation Capture bisulfite sequencing (MC-seq) captures target regions of methylome and has advantages of extensive coverage in the methylome at an affordable price.MethodsEpigenome-wide DNA methylation in four peripheral blood mononuclear cell samples was profiled by using SureSelectXT Methyl-Seq for MC-seq and EPIC platforms separately. CpG site-based reproducibility of MC-seq was assessed with DNA sample inputs ranging in quantity of high (> 1000 ng), medium (300–1000 ng), and low (150 ng–300 ng). To compare the performance of MC-seq and the EPIC arrays, we conducted a Pearson correlation and methylation value difference at each CpG site that was detected by both MC-seq and EPIC. We compared the percentage and counts in each CpG island and gene annotation between MC-seq and the EPIC array.ResultsAfter quality control, an average of 3,708,550 CpG sites per sample were detected by MC-seq with DNA quantity > 1000 ng. Reproducibility of DNA methylation in MC-seq-detected CpG sites was high among samples with high, medium, and low DNA inputs (r > 0.96). The EPIC array captured an average of 846,464 CpG sites per sample. Compared with the EPIC array, MC-seq detected more CpGs in coding regions and CpG islands. Among the 472,540 CpG sites captured by both platforms, methylation of a majority of CpG sites was highly correlated in the same sample (r: 0.98–0.99). However, methylation for a small proportion of CpGs (N = 235) differed significantly between the two platforms, with differences in beta values of greater than 0.5.ConclusionsOur results show that MC-seq is an efficient and reliable platform for methylome profiling with a broader coverage of the methylome than the array-based platform. Although methylation measurements in majority of CpGs are highly correlated, a number of CpG sites show large discrepancy between the two platforms, which warrants further investigation and needs cautious interpretation.

Highlights

  • The rapid increase in the number of epigenome-wide association studies (EWAS) have successfully identified differentially methylated CpG sites that are associated with environmental exposures and diseases [1–6]

  • The most popular and affordable methods to profile epigenome-wide DNA methylation are array-based platforms, primarily the Illumina Human Methylation 450 K (450 K) and Infinium MethylationEPIC (EPIC) BeadChips (Illumina Inc, San Diego, CA)

  • Whole-genome bisulfite sequencing (WGBS) is able to capture more than 28 million CpGs, but the feasibility remains low for the population-based Epigenome-wide association studies (EWAS) due to high cost and large genomic DNA input requirements to compensate for degradation during DNA bisulfite treatment

Read more

Summary

Introduction

The rapid increase in the number of epigenome-wide association studies (EWAS) have successfully identified differentially methylated CpG sites that are associated with environmental exposures and diseases [1–6]. The most popular and affordable methods to profile epigenome-wide DNA methylation are array-based platforms, primarily the Illumina Human Methylation 450 K (450 K) and Infinium MethylationEPIC (EPIC) BeadChips (Illumina Inc, San Diego, CA) These arrays utilize Illumina’s beadchip technology that does not require polymerase chain reaction (PCR), but is subject to dye intensity biases between the two platforms [12]. Methylation Capture Sequencing (MC-seq) is able to detect DNA methylation at singlenucleotide resolution utilizing a targeted next-generation sequencing approach [14] It permits profiling of significantly more CpG sites than the EPIC array, requires less genomic DNA input than WGBS, and less expensive than WGBS, but can be susceptible to bias due to the presence of PCR duplicates. Methylation Capture bisulfite sequencing (MC-seq) captures target regions of methylome and has advantages of extensive coverage in the methylome at an affordable price

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.