Abstract

BackgroundPatient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Since most statistical methods for expression analysis are focused on differences between experimental groups, the performance of approaches for patient-specific expression analyses are currently less well characterized. A comparison of methods for the identification of genes that are dysregulated relative to a single sample in a given set of experimental samples, to our knowledge, has not been performed.MethodsWe systematically evaluated several methods including variations on the nearest neighbor based outlying degree method, as well as the Zscore and a robust variant for their suitability to detect patient-specific events. The methods were assessed using both simulations and expression data from a cohort of pediatric acute B lymphoblastic leukemia patients.ResultsWe first assessed power and false discovery rates using simulations and found that even under optimal conditions, high effect sizes (>4 unit differences) were necessary to have acceptable power for any method (>0.9) though high false discovery rates (>0.1) were pervasive across simulation conditions. Next we introduced a technical factor into the simulation and found that performance was reduced for all methods and that using weights with the outlying degree could provide performance gains depending on the number of samples and genes affected by the technical factor. In our use case that highlights the integration of functional assays and aberrant expression in a patient cohort (the identification of gene dysregulation events associated with the targets from a siRNA screen), we demonstrated that both the outlying degree and the Zscore can successfully identify genes dysregulated in one patient sample. However, only the outlying degree can identify genes dysregulated across several patient samples.ConclusionOur results show that outlying degree methods may be a useful alternative to the Zscore or Rscore in a personalized medicine context especially in small to medium sized (between 10 and 50 samples) expression datasets with moderate to high sample-to-sample variability. From these results we provide guidelines for detection of aberrant expression in a precision medicine context.

Highlights

  • Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets

  • For our simulation size of 20 samples, we found that k = 9 seemed to provide good performance over a range of effect sizes (Figures S1 and S2 in Additional file 2) with relatively little additional performance gains above nine

  • Note that this assumes that the conditions of the simulation roughly approximate that of the dataset in question and that one is mainly interested in finding single sample outliers

Read more

Summary

Introduction

Patient-specific aberrant expression patterns in conjunction with functional screening assays can guide elucidation of the cancer genome architecture and identification of therapeutic targets. Individual expression patterns can reflect underlying mutation, chromosomal rearrangement and copy number events This shifts the focus to a different type of analysis procedure: identification of a single sample or small subgroups that have divergent expression from the rest of the group (for example, the detection of candidate oncogenic chromosomal aberrations on the basis of outlier gene expression in prostate cancer [10]). Two procedures used for these experiments are a Z-transformation (Zscore) or robust Zscore (Rscore) along with a cutoff dictating outlier or hit status [32] Both methods have been applied to microarray analysis as well. We note that the Rscore is the first step of the COPA and OS methods with outlier status determined empirically [10,11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.