Abstract

Few previous studies have assessed stability and "gold-standard" concordance of fecal sample collection methods for whole-genome shotgun metagenomic sequencing (WGSS), an increasingly popular method for studying the gut microbiome. We used WGSS data to investigate ambient temperature stability and putative gold-standard concordance of microbial profiles in fecal samples collected and stored using fecal occult blood test (FOBT) cards, fecal immunochemical test (FIT) tubes, 95% ethanol, or RNAlater. Among 15 Mayo Clinic employees, for each collection method, we calculated intraclass correlation coefficients (ICCs) to estimate stability of fecal microbial profiles after storage for 4 days at ambient temperature and concordance with immediately frozen, no-solution samples (i.e., the putative gold standard). ICCs were estimated for multiple metrics, including relative abundances of select phyla, species, KEGG k-genes (representing any coding sequence that had >70% identity and >70% query coverage with respect to a known KEGG ortholog), KEGG modules, and KEGG pathways; species and k-gene alpha diversity; and Bray-Curtis and Jaccard species beta diversity. ICCs for microbial profile stability were excellent (≥90%) for fecal samples collected via most of the collection methods, except those preserved in 95% ethanol. Concordance with the immediately frozen, no-solution samples varied for all collection methods, but the number of observed species and the beta diversity metrics tended to have higher concordance than other metrics. Our findings, taken together with previous studies and feasibility considerations, indicated that FOBT cards, FIT tubes, and RNAlater are acceptable choices for fecal sample collection methods in future WGSS studies.IMPORTANCE A major direction for future microbiome research is implementation of fecal sample collections in large-scale, prospective epidemiologic studies. Studying microbiome-disease associations likely requires microbial data to be pooled from multiple studies. Our findings suggest collection methods that are most optimal to be used standardly across future WGSS microbiome studies.

Highlights

  • Few previous studies have assessed stability and “gold-standard” concordance of fecal sample collection methods for whole-genome shotgun metagenomic sequencing (WGSS), an increasingly popular method for studying the gut microbiome

  • The number of observed k-genes and the Shannon index values for k-genes tended to be higher on day-0 of freezing, except in RNAlater samples, and were highest, on average, in fecal occult blood test (FOBT) card samples for both metrics

  • After adjusting for freezing time in linear mixed-effects models (Table S2), compared to the “gold standard,” averages of 46, 31, 41, and 43 fewer species were detected in samples collected via 95% ethanol, fecal immunochemical test (FIT) tubes, FOBT cards, and RNAlater, respectively (P ϭ 0.001, 0.02, 0.002, and 0.001, respectively)

Read more

Summary

Introduction

Few previous studies have assessed stability and “gold-standard” concordance of fecal sample collection methods for whole-genome shotgun metagenomic sequencing (WGSS), an increasingly popular method for studying the gut microbiome. We used WGSS data to investigate ambient temperature stability and putative gold-standard concordance of microbial profiles in fecal samples collected and stored using fecal occult blood test (FOBT) cards, fecal immunochemical test (FIT) tubes, 95% ethanol, or RNAlater. Among 15 Mayo Clinic employees, for each collection method, we calculated intraclass correlation coefficients (ICCs) to estimate stability of fecal microbial profiles after storage for 4 days at ambient temperature and concordance with immediately frozen, no-solution samples (i.e., the putative gold standard). Evidence from 16S rRNA gene amplicon sequencing studies suggests that the chosen fecal collection method impacts multiple estimates of microbial composition [9,10,11,12]; development of standard fecal collection protocols is required, especially for pooling of microbial data across studies. Compared to 16S rRNA gene studies, WGSS provides high-resolution profiles of bacteria down to the species or strain level and can estimate functional potential of microbes using gene/pathway content information, which may be important for understanding the role of the microbiota in human health [17,18,19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.