Abstract

The potential and electric field boundary conditions for the Gouy-Chapman model of the electrolyte diffuse layer are used to properly couple the potentials in the silicon-on-insulator-based metal-oxide-semiconductor field-effect transistor to the electrolyte. This analysis is possible because the active silicon channel is fully depleted. Both the subthreshold and linear regimes are simulated. An operation with electrolyte floating and bias applied to the substrate is compared with the other methods of biasing the sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call