Abstract

Multiple methods have been developed to estimate narrow-sense heritability, h2, using single nucleotide polymorphisms (SNPs) in unrelated individuals. However, a comprehensive evaluation of these methods has not yet been performed, leading to confusion and discrepancy in the literature. We present the most thorough and realistic comparison of these methods to date. We utilized thousands of real whole genome sequences to simulate phenotypes under varying genetic architectures and confounding variables, and used array, imputed, or whole genome sequence SNPs to obtain “SNP-heritability” estimates (ĥ2SNP). We show that ĥ2SNP can be highly sensitive to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium (LD) of underlying causal variants, but that methods that bin SNPs according to minor allele frequency and LD are less sensitive to these assumptions across a wide range of genetic architectures and possible confounding factors. These findings provide guidance for best practices and proper interpretation of published estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.