Abstract

AbstractPhenotypic, chemotaxonomic and genotypic data from 12 strains ofEscherichia coli werecollected, including carbon source utilisation profiles, ribotypes, sequencing data of the 16S–23S rRNA internal transcribed region (ITS) and Fourier transform-infrared (FT-IR) spectroscopic profiles. The objectives were to compare several identification systems forE. coliand to develop and test a polyphasic taxonomic approach using the four methodologies combined for the sub-typing of O157 and non-O157E. coli. The nucleotide sequences of the 16S–23S rRNA ITS regions were amplified by polymerase chain reaction (PCR), sequenced and compared with reference data available at the GenBank database using the Basic Local Alignment Search Tool (BLAST) . Additional information comprising the utilisation of carbon sources, riboprint profiles and FT-IR spectra was also collected. The capacity of the methods for the identification and typing ofE. colito species and subspecies levels was evaluated. Data were transformed and integrated to present polyphasic hierarchical clusters and relationships. The study reports the use of an integrated scheme comprising phenotypic, chemotaxonomic and genotypic information (carbon source profile, sequencing of the 16S–23S rRNA ITS, ribotyping and FT-IR spectroscopy) for a more precise characterisation and identification ofE. coli. The results showed that identification ofE. colistrains by each individual method was limited mainly by the extension and quality of reference databases. On the contrary, the polyphasic approach, whereby heterogeneous taxonomic data were combined and weighted, improved the identification results, gave more consistency to the final clustering and provided additional information on the taxonomic structure and phenotypic behaviour of strains, as shown by the close clustering of strains with similar stress resistance patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.