Abstract

For evaluating exponential luminescence decays, there are a variety of computational rapid integral methods based on the areas of the decay under different binned intervals. Using both Monte Carlo methods and experimental photon counting data, we compare the standard rapid lifetime determination method (SRLD), optimized rapid lifetime determination methods (ORLD), maximum likelihood estimator method (MLE), and the phase plane method (PPM). The different techniques are compared with respect to precision, accuracy, sensitivity to binning range, and the effect of baseline interference. The MLE provides the best overall precision, but requires 10 bins and is sensitive to very small uncorrected baselines. The ORLD provides nearly as good precision using only two bins and is much more immune to uncompensated baselines. The PPM requires more bins than the MLE and has systematic errors, but is largely resistant to baseline issues. Therefore, depending on the data acquisition method and the number of bins that can be readily employed, the ORLD and MLE are the preferred methods for reasonable signal-to-noise ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.