Abstract
Electrical impedance tomography has the potential to provide a portable non-invasive method for imaging brain function. Clinical data collection has largely been undertaken with time difference data and linear image reconstruction methods. The purpose of this work was to determine the best method for selecting the regularization parameter of the inverse procedure, using the specific application of evoked brain activity in neonatal babies as an exemplar. The solution error norm and image SNR for the L-curve (LC), discrepancy principle (DP), generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) selection methods were evaluated in simulated data using an anatomically accurate finite element method (FEM) of the neonatal head and impedance changes due to blood flow in the visual cortex recorded in vivo. For simulated data, LC, GCV and UPRE were equally best. In human data in four neonatal infants, no significant differences were found among selection methods. We recommend that GCV or LC be employed for reconstruction of human neonatal images, as UPRE requires an empirical estimate of the noise variance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.