Abstract
Eight methods of assessing growth rate constants of bacteria were compared in batch cultures of 3-micrometers-filtered estuarine water from the Skidaway River in Ga. Mixed assemblages of bacteria were grown under four nutrient regimes of added yeast extract ranging from 0 to 100 mg/liter. Linear and exponential growth rate constants were computed from changes in cell densities, biovolumes, and ATP concentrations. Exponential growth rate constants were obtained from the frequency of dividing cells and RNA synthesis as measured by [3H]adenine uptake. Rate constants obtained during lag, exponential, and stationary growth phases depended largely on the method used. Constants calculated from changes in cell densities, frequency of dividing cells, and adenine uptake correlated most closely with each other, whereas constants calculated from changes in ATP concentrations and biovolumes correlated best with each other. Estimates of in situ bacterial productivity and growth vary depending on the method used and the assumptions made regarding the growth state of bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.