Abstract

A series of molecules related to malonaldehyde, containing an intramolecular H-bond, are used as the testbed for a variety of levels of ab initio calculation. Of particular interest are the excitation energies of the first set of valence excited states, nπ* and ππ*, both singlet and triplet, as well as the energetics of proton transfer in each state. Taking coupled cluster results as a point of reference, configuration interaction-singles–second-order Møller–Plesset (CIS–MP2) excitation energies are too large, as are CIS to a lesser extent, although these approaches successfully reproduce the order of the various states. The same may be said of complete active space self-consistent-field (CASSCF), which is surprisingly sensitive to the particular choice of orbitals included in the active space. Complete active space–second-order perturbation theory (CASPT2) excitation energies are rather close to coupled cluster singles and doubles (CCSD), as are density functional theory (DFT) values. CASSCF proton transfer barriers are large overestimates; the same is true of CIS to a lesser extent. MP2, CASPT2, and DFT barriers are closer to coupled cluster results, although yielding slight underestimates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call