Abstract

Various impedance-based and nonlinear frequency response-based methods for determining the state-of-health (SOH) of commercial lithium-ion cells are evaluated. Frequency response-based measurements provide a spectral representation of dynamics of underlying physicochemical processes in the cell, giving evidence about its internal physical state. The investigated methods can be carried out more rapidly than controlled full discharge and thus constitute prospectively more efficient measurement procedures to determine the SOH of aged lithium-ion cells. We systematically investigate direct use of electrochemical impedance spectroscopy (EIS) data, equivalent circuit fits to EIS, distribution of relaxation times analysis on EIS, and nonlinear frequency response analysis. SOH prediction models are developed by correlating key parameters of each method with conventional capacity measurement (i.e., current integration). The practical feasibility, reliability and uncertainty of each of the established SOH models are considered: all models show average RMS error in the range 0.75%–1.5% SOH units, attributable principally to cell-to-cell variation. Methods based on processed data (equivalent circuit, distribution of relaxation times) are more experimentally and numerically demanding but show lower average uncertainties and may offer more flexibility for future application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.