Abstract
Various aspects of energy metabolism and feed digestibility were evaluated in two reportedly improved strains of Nile tilapia (Oreochromis niloticus) namely GIFT (genetically improved farmed tilapia) and GMNT (genetically male Nile tilapia) and compared with those of CNT (conventional Nile tilapia). Fish were stocked individually in a computer-controlled respirometer system at 27+/-0.1 degrees C for 10 weeks. Metabolic rates were measured at three different feeding levels: starved, maintenance (3.0 g kg(-0.8) day(-1)) and growth (7.5 g kg(-0.8) day(-1)) using a fishmeal based feed containing TiO2 marker (41% crude protein, 9% crude lipid and 19 kJ (g DM)(-1) gross energy). The standard metabolic rate (SMR), measured at the beginning of the experiment (45.4+/-4.6, 52.4+/-7.7 and 46.8+/-4.6 mg O2 kg(-0.8) h(-1) respectively for GIFT, GMNT and CNT), did not differ significantly between the groups (p<0.05). Similarly, non-significant differences were also observed in the routine metabolic rates under starved, maintenance and growth conditions but the variability was higher in the case of GMNT and CNT than in GIFT. The latter group showed a significantly lower active metabolic rate (145 mg O2 kg(-0.8) h(-1)) compared to GMNT and CNT (232 and 253 mg O2 kg(-0.8) h(-1), respectively) at maintenance feeding level. The specific dynamic action (% offered feed energy) showed no significant differences among the groups. Digestibility coefficients of feed dry matter, protein, lipid and energy for the three tilapia groups also did not differ significantly. Therefore, we concluded that the genetic improvement or modification in the GIFT or GMNT might not upgrade the inherent physiological potential compared to CNT as far as energy metabolism and digestion efficiencies are concerned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.