Abstract
ObjectiveTo compare the metabolic cost (oxygen uptake per unit time [V˙o2 consumption], heart rate, and number of pushes), performance (velocity and distance traveled), and efficiency (oxygen uptake per distance traveled [Vo2 efficiency]) of propulsion using a novel ergonomic hand drive mechanism (EHDM) and a conventional manual wheelchair (CMW). DesignRepeated-measures crossover design. SettingSemicircular track. ParticipantsAdult full-time manual wheelchair users with spinal cord injuries (N=12; mean age ± SD, 38.8±12.4y; mean body mass ± SD, 73.7±13.3kg; mean height ± SD, 173.6±11.1cm) who were medically and functionally stable and at least 6 months postinjury. InterventionParticipants propelled themselves for 3.5 minutes at a self-selected pace in a CMW and in the same chair fitted with the EHDM. Main Outcome MeasuresVelocity, distance traveled, number of pushes, V˙o2 consumption, Vo2 efficiency, and heart rate were compared by wheelchair condition for the last 30 seconds of each trial using paired t tests (α=.01). ResultsThe CMW condition resulted in more distance traveled (33.6±10.8m vs 22.4±7.8m; P=.001), greater velocity (1.12±0.4m/s vs .75±.30m/s; P=.001), and better Vo2 efficiency (.10±.03mL·kg−1·m−1 vs .15±.03mL·kg−1·m−1; P<.001) than the EHDM condition, respectively. No significant differences were found between the 2 conditions for number of pushes (27.5±5.7 vs 25.7±5.4; P=.366), V˙o2 consumption (6.43±1.9mL·kg−1·min−1 vs 6.19±1.7mL·kg−1·min−1; P=.573), or heart rate (100.5±14.5 beats per minute vs 97.4±20.2 beats per minute; P=.42). ConclusionsThe results demonstrate that metabolic costs did not differ significantly; however, performance and efficiency were sacrificed with the EHDM. Modifications to the EHDM (eg, addition of gearing) could rectify the performance and efficiency decrements while maintaining similar metabolic costs. Although not an ideal technology, the EHDM can be considered as an alternative mode of mobility by wheelchair users and rehabilitation specialists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.