Abstract
In response to environmental anoxia, embryos of the brine shrimp Artemia franciscana enter a dormant state during which energy metabolism and development are arrested. The intracellular acidification that correlates with this transition into anaerobic dormancy has been linked to the inhibition of protein synthesis in quiescent embryos. In this study, we have addressed the level of control at which a mechanism mediated by intracellular pH might operate to arrest protein synthesis. Two independent lines of evidence suggest that there is an element of translational control when protein synthesis is arrested in dormant embryos. First, as determined by in vitro translation techniques, there were no significant quantitative differences in mRNA pools in dormant as compared to actively developing embryos. In addition, fluorography of the translation products showed that there are no large qualitative changes in mRNA species when embryos become dormant. These data suggest that there was no net degradation of mRNA pools in dormant embryos and that protein synthesis may therefore be controlled more strongly at translation than at transcription. Second, polysome profile studies showed that dormant embryos possess reduced levels of polysomes relative to those found in cells or active embryos. The disaggregation of polysomes is an indication that the initiation step in protein synthesis is disrupted and is further evidence that the mechanism involved in protein synthesis arrest in dormant Artemia involves translational control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.