Abstract

Decellularized nerve allograft is an alternative to autologous nerve graft for nerve defects but has shown inferior clinical outcomes. Mesenchymal stem cells can play a key role in improving nerve regeneration of decellularized nerve allografts. The purpose of this study was to compare different mesenchymal stem cell seeding methods and to find the most efficient way to attach cells to nerve grafts for peripheral nerve regeneration. Wharton's jelly mesenchymal stem cells were collected from human umbilical cords and were seeded in the acellular nerve graft in five different ways as follows: PBS injection, fibrin glue drop, Matrigel drop, bioreactor, and Matrigel injection. A 6-mm sciatic nerve defect of Sprague–Dawley rats was bridged using mesenchymal stem cells-laden acellular nerve grafts according to the five seeding methods. Two days after implantation, the nerve tissue was biopsied and analyzed by the immunofluorescence staining of nuclei. The number of Wharton's jelly mesenchymal stem cells (+ h Nuclei) was counted in the inside, outside, and the total area of the graft sections under 200X magnification. The highest efficiency of mesenchymal stem cell attachment inside the graft and the highest total number of attached mesenchymal stem cells was observed in the group using Matrigel injection (p < 0.0001). This study showed mesenchymal stem cells can be more effectively attached to decellularized nerve graft using the injection method with Matrigel than other static or dynamic seeding methods in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call