Abstract

The paper compares laser cleaning trials performed using a Q-switched Nd:YAG laser, λ = 1.064 μm and a continuous wave (CW) CO2 laser, λ = 10.6 μm, applied to aerospace-grade, contaminated titanium alloys. The mechanisms for cleaning using each laser system are modelled to determine the mode and extent of contaminant removal. The model results are then compared with the surface chemistry and micro-structural results from the cleaning trials performed. The results show the dominant cleaning process for Nd:YAG cleaning to be by evaporation of the contaminant via conduction through surface heating, while for CO2 laser cleaning the small fraction of the beam coupling directly with the contaminant is sufficient for direct heating and selective evaporation. The results for experimental cleaning, electron beam (EB) welding and diffusion bonding align well with the model, particularly when secondary reactions are taken into account.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.