Abstract

IntroductionThe objective of this study was to evaluate the density of mineral trioxide aggregate (MTA) root-end filling placed by either manual condensation or manual condensation with indirect ultrasonic activation under simulated root-end surgery conditions in vitro. MethodsExtracted human molar teeth were obtained and sectioned to provide single-rooted samples (n = 50). Roots were instrumented to a size of 40 with a .04 taper and obturated with a warm vertical technique. The coronal end of each root was embedded in resin. A root-end resection and root-end preparation were completed on each root. Samples were randomly assigned to receive root-end fillings with ProRoot MTA (Dentsply, Tulsa, OK) by 1 of 2 techniques: manual condensation alone (group M, n = 25) or manual condensation with indirect ultrasonic activation (group U, n = 25). MTA was placed incrementally to the level of the root end using the enumerated technique. Samples were weighed immediately before and after filling placement. MTA was removed from all samples so as not to change the root-end preparation, rinsed, and dried. Each sample then underwent MTA placement by the opposite technique, and weight was again measured immediately before and after MTA placement. MTA filling weights for each technique were analyzed statistically using a technique for repeated measures analysis. Statistical analysis was conducted to account for any carryover or order effects. ResultsAfter adjustment for carryover effects, it was found that regardless of the order of placement, the mean fill weight of MTA produced by the indirect ultrasonic method was on average 4.42 mg heavier than that produced by manual condensation alone. This result was statistically significant (P < .0003). ConclusionsUnder simulated root-end surgery conditions, indirect ultrasonic condensation of MTA root-end fillings was shown to produce a filling that was significantly denser than MTA placed by manual condensation alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.