Abstract

BackgroundThe current study aimed to compare the measurements of the mandible morphology using 3D cone beam computed tomography (CBCT) images with those using 2D CBCT-synthesized cephalograms; to quantify errors in measurements based on 2D synthesized cephalograms; and to clarify the effects such errors have on the description of the mandibular growth.MethodsMandibles of six miniature pigs were scanned monthly using CBCT over 12 months and the data were used to reconstruct the 3D bone models. Five anatomical landmarks were identified on each bone model, and the inter-marker distances and monthly distance changes were calculated and taken as the gold standard. Synthetic 2D cephalograms were also generated for each bone model using a digitally reconstructed radiography (DRR)-generation method. Errors in cephalogram measurements were determined as the differences between the calculated variables in cephalograms and the gold standard. The variations between cephalograms and the gold standard were also compared using paired t-tests.ResultsWhile the inter-marker distance increases varied among the marker pairs, all marker pairs increased their inter-marker distances gradually every month, reaching 50% of the total annual increases during the fourth and fifth months, and then slowing down in the subsequent months. The 2D measurements significantly underestimated most of the inter-marker distances throughout the monitoring period, in most of the monthly inter-marker distance changes during the first four months, and in the total growth (p < 0.05).ConclusionsSignificant errors exist in the measurements using 2D synthesized cephalogram, underestimating the mandibular dimensions and their monthly changes in the early stages of growth, as well as the total annual growth. These results should be considered in dental treatment planning at the beginning of the treatment in order to control more precisely the treatment process and outcome.

Highlights

  • The current study aimed to compare the measurements of the mandible morphology using 3D cone beam computed tomography (CBCT) images with those using 2D CBCT-synthesized cephalograms; to quantify errors in measurements based on 2D synthesized cephalograms; and to clarify the effects such errors have on the description of the mandibular growth

  • This study aimed to compare the measurements of mandible morphology made on 3D CBCT data with those on CBCT-synthesized 2D cephalograms; to quantify the errors in measurements made on CBCT-synthesized cephalograms; and to clarify whether such errors would affect the description of the changes in mandibular growth

  • The errors in 2D measurements caused significant underestimations in most of the inter-marker distances throughout the monitoring period (Figure 8), in most of the monthly inter-marker distance changes during the first four months (Figure 9), and in the total growth (Table 3). These results showed that significant errors were prevalent in the 2D measurements of the dimensions and their monthly changes in the early stage of growth, as well as in the total growth of the mandible

Read more

Summary

Introduction

The current study aimed to compare the measurements of the mandible morphology using 3D cone beam computed tomography (CBCT) images with those using 2D CBCT-synthesized cephalograms; to quantify errors in measurements based on 2D synthesized cephalograms; and to clarify the effects such errors have on the description of the mandibular growth. Dental treatments are often performed while the mandible bone is still growing This is especially true during the process of orthodontic treatment planning or the assessment of the outcome of craniomandibular surgery. Long-term follow-up experiments on animal bone-growth can shed light on the growth of the mandible, and can be useful in the construction and experimental validation of predictive mathematical models. Many of the previous studies on the mandible have used pigs as animal models because their anatomy, physiology, circulatory system, mastication system and teeth germination are very similar to those of humans [3,4,5] This is especially true for mini-pigs in which the size and shape of the jaw, occlusion and bone metabolism rate are similar to those of humans [6,7,8,9]. Compared to other pig breeds, mini-pigs are small in body size and relatively easy to manipulate in experiments, making them much more feasible for use as subjects in mandible studies

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call