Abstract

The process of fusion arc welding of steel pipes in power generation plants induces residual stresses which may be detrimental to the integrity and endurance of plant pipelines. P91 is high-grade steel used in the construction of pipelines carrying hot steam at high pressure, conditions which cause creep during service. Welded P91 pipes are usually subjected to post-weld heat treatment (PWHT) to mitigate the magnitude of residual stresses and temper the material, hence improving its resistance to creep. In this paper, the finite element (FE) method of modelling residual stresses due to PWHT in a circumferentially butt-welded P91 pipe is presented. The PWHT hold temperature is 760 °C. The paper describes the X-Ray Diffraction (XRD) and Deep-Hole Drilling (DHD) experimental techniques and how they are applied to measure residual stresses in the welded P91 pipe after PWHT. The material property data, necessary for the FE simulation of PWHT, has been obtained from stress-relaxation tests on P91 uniaxial tensile specimens at 760 °C. Good agreements have been achieved between the results of the FE method and the two sets of experimentally-measured residual stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.