Abstract
Integral experiments that measure the transport of approx. 14 MeV neutrons through a 0.30-m-diameter duct having a length-to-diameter ratio of 2.83 that is partially plugged with a 0.15 m diameter, 0.51 m long shield comprised of alternating layers of stainless steel type 304 and borated polyethylene have been carried out at the Oak Ridge National Laboratory. Measured and calculated neutron and gamma ray energy spectra are compared at several locations relative to the mouth of the duct. The measured spectra were obtained using an NE-213 liquid scintillator detector with pulse shape discrimination methods used to simultaneously resolve neutron and gamma ray events. The calculated spectra were obtained using a computer code network that incorporates two radiation transport methods: discrete ordinates (with P/sub 3/ multigroup cross sections) and Monte Carlo (with continuous point cross sections). The two radiation transport methods are required to account for neutrons that singly scatter from the duct to the detectors. The calculated and measured neutron energy spectra above 850 keV agree with 5 to 50% depending on detector location and neutron energy. The calculated and measured gamma ray energy spectra above 750 keV are also in favorable agreement, approx. 5 to 50%, depending on detector location and gamma ray energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.