Abstract

IntroductionLung cancer is the most common cancer overall, and the foremost cause of cancer-related mortality. Almost all lung cancers evolve from pulmonary nodules. As multidetector CT (MDCT) scanners are now widely available, there is an increased rate of detection of pulmonary nodules. It is of utmost importance to evaluate pulmonary nodules to rule out the possibility of neoplastic diseases. With advancements in technology, there are various manual and automatic analytic software providing a wide range of post-processing techniques. Maximum intensity projection (MIP) and volume rendering (VR) techniques have been analyzed previously regarding pulmonary nodules but there is a scarcity of data in terms of low-density nodules. This study aims to delineate the comparison and supremacy of both techniques in terms of low-density nodules.MethodologyThe current prospective study was conducted from June 2019 to June 2020 in the Radiology Department at Dr. Ziauddin Hospital, Karachi. Chest CT scans were performed on 16 slice MDCT (Alexion 16 Multi-slice, Toshiba Medical System Corporation, Houston, TX). A consultant radiologist of six years experience and a postgraduate trainee of three years experience analyzed each patient on a workstation (Vitrea 6.2.0, Vital Images, Minnetonka, MN). SPSS 23.0 (SPSS Inc., Chicago, IL) was incorporated for data analysis. Data were expressed in the median and interquartile range (IQR). Data collected for this study were analyzed using analyzing the median difference in nodule count using Wilcoxon’s signed-rank test. A p-value of <0.05 was considered significant.ResultsAfter informed consent, 236 patients were recruited for the study. MIP outperformed VR in terms of nodule detection and low-density nodules at each evaluated slab thicknesses (p<0.001). A 10-mm MIP was superior to all other techniques in terms of detection of pulmonary nodules and low-density nodules (p<0.001). MIP was also considered an easier technique as there was excellent inter-rater reliability and agreement.ConclusionThis study is robust evidence regarding the supremacy of MIP. MIP outperformed VR on every slab thicknesses. The 10-mm MIP technique was superior to all others evaluated and was recorded to be an easier analyzing technique.

Highlights

  • Lung cancer is the most common cancer overall, and the foremost cause of cancer-related mortality

  • A 10-mm Maximum intensity projection (MIP) was superior to all other techniques in terms of detection of pulmonary nodules and low-density nodules (p

  • We found that 4- and 7-mm MIP picked more number of nodules of two different categories as compared to the same slab thickness of volume rendering (VR) (p6-mm size but not for

Read more

Summary

Introduction

Lung cancer is the most common cancer overall, and the foremost cause of cancer-related mortality. Almost all lung cancers evolve from pulmonary nodules. As multidetector CT (MDCT) scanners are widely available, there is an increased rate of detection of pulmonary nodules. It is of utmost importance to evaluate pulmonary nodules to rule out the possibility of neoplastic diseases. There are various manual and automatic analytic software providing a wide range of postprocessing techniques. Maximum intensity projection (MIP) and volume rendering (VR) techniques have been analyzed previously regarding pulmonary nodules but there is a scarcity of data in terms of low-density nodules. This study aims to delineate the comparison and supremacy of both techniques in terms of lowdensity nodules

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.