Abstract

Background: Titanium and its alloys are used as implant materials for decades. Zirconium and carbon-fiber-reinforced-polyetheretherketone (CFR-PEEK) are newer materials available in implantology but long-term clinical studies are not yet available to prove their advantages over titanium implants. Aim: The objective of this study was to evaluate and compare the magnitude of stress distribution at implant-bone interface when using titanium, zirconium, and CFR-PEEK implants. Materials and Methods: Mandibular first molar was considered for the study along with surrounding bone structure. Implant of specific dimensions was constructed at the first molar region and then lithium disilicate crown was modeled on the abutment. Hypermesh 13.0 software was used for creating finite element models and then assign the material properties for each part. This model was exported to ANSYS 19.2 software for analysis. Loads and boundary conditions were applied to the model and then solved. Interpretation of results was done. Results: The results revealed that von Mises stress distribution on medullar bone under different loading conditions, model with zirconium implant with PEEK abutment (Model B) showed better performance compared to others. Von Mises stress distribution on abutment and implant showed that model with CFR-PEEK implant with PEEK abutment (Model C) had better performance compared with others under different loading conditions. Deformation of medullar bone and implant-abutment structure was more in model with CFR-PEEK implant when compared to others although this was within the acceptable limits. Conclusions: Within the limitation of the study, it was observed that the magnitude of von Mises stress for all the models was within the acceptable range and hence zirconium and CFR-PEEK can be a suitable alternative to conventional titanium implants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call