Abstract

A comparison is made here between the magnetic field and electric potential produced by a thin strip of frog heart muscle. An experimental test is made of the theory which states that the wave front of a single fiber (or parallel bundle of fibers as in this strip) can be represented, for both the magnetic field and electric potential, by the same single-current dipole. First, an experimental measurement is made of the ratio of magnetic field/electric potential produced by an actual current dipole in an electrolytic tank. Then the dipole is replaced by the muscle strip and a measurement is again made of the ratio; this is done for three muscle strips at eight different source-to-detector distances ranging from 1 to 5 cm. It is found, in all cases, that the muscle ratios are equal to those of the actual dipole to within the experimental uncertainty of ±10%. Therefore, to this extent the theory is verified for this case of a thin strip of frog heart tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call