Abstract
ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis research and support methods for the development of CAD (computer-aided diagnosis) systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.