Abstract
This study integrates different machine learning (ML) methods and 5-fold cross-validation (CV) method to estimate the ground maximal surface settlement (MSS) induced by tunneling. We further investigate the applicability of artificial intelligent (AI) based prediction through a comparative study of two tunnelling datasets with different sizes and features. Four different ML approaches, including support vector machine (SVM), random forest (RF), back-propagation neural network (BPNN), and deep neural network (DNN), are utilized. Two techniques, i.e. particle swarm optimization (PSO) and grid search (GS) methods, are adopted for hyperparameter optimization. To assess the reliability and efficiency of the predictions, three performance evaluation indicators, including the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient ( R ), are calculated. Our results indicate that proposed models can accurately and efficiently predict the settlement, while the RF model outperforms the other three methods on both datasets. The difference in model performance on two datasets (Datasets A and B) reveals the importance of data quality and quantity. Sensitivity analysis indicates that Dataset A is more significantly affected by geological conditions, while geometric characteristics play a more dominant role on Dataset B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rock Mechanics and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.