Abstract

ObjectivesIdentifying acute exacerbations in chronic obstructive pulmonary disease (AECOPDs) is of utmost importance for reducing the associated mortality and financial burden. In this research, the authors aimed to develop identification models for AECOPDs and to compare the relative performance of different modeling paradigms to find the best model for this task. MethodsData were extracted from electronic medical records (EMRs) of patients with chronic obstructive pulmonary disease who admitted to the China-Japan Friendship Hospital between February 2011 and March 2017. Five machine learning algorithms (random forest, support vector machine, logistic regression, K-nearest neighbor and naïve Bayes) were used to develop the AECOPDs identification models. Feature selection was performed to find an optimal feature subset. 10-folds cross-validation was used to find the best hyperparameters for each model. The following metrics: area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, and negative predictive value were used to evaluate the performance of these models. ResultsA total of 303 EMRs (AECOPDs patients:135; None AECOPDs patients: 168) were included in the study. The SVM model obtained the best performance (sensitivity: 0.80, specificity: 0.83, positive predictive value:0.81, negative predictive value:0.85 and area under the receiver operating characteristic curve: 0.90) after performing feature selection. ConclusionsOur research confirms that the proposed model based on the support vector machine is a powerful tool to identify AECOPDs patients, and it is promising to provide decision support for clinicians when they are struggling to give a confirmed clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.