Abstract

Airway remodeling is a prominent feature of feline allergic asthma but requires biopsy for characterization. Computed tomography (CT) has appeal as a minimally invasive diagnostic test. The purpose of this prospective case-control study was to compare indices of airway remodeling between cats with experimentally induced, spontaneous asthma and healthy unaffected cats using CT. We hypothesized that experimental and spontaneous feline asthma would have similar CT airway remodeling characteristics and that these would be significantly different in healthy cats. Experimentally induced asthmatic research cats (n = 5), spontaneously asthmatic pet cats (n = 6), and healthy research cats (n = 5) were scanned unrestrained using a 64-detector row CT scanner. Inspiratory breath-hold CT scans were also performed in experimentally induced asthmatic and healthy cats. Mean ± extent variation of lung attenuation for each cat was determined using an airway inspector software program and CT images were scored for lung heterogeneity by a board-certified veterinary radiologist who was unaware of cat group status. Groups were compared using one-way ANOVA (unrestrained scans) and the Student's t-test (anesthetized scans) with significance defined as P < 0.10. Experimentally asthmatic and spontaneously asthmatic cats had significantly (P = 0.028 and P = 0.073, respectively) increased lung attenuation compared to healthy cats. Heterogeneity scores were higher in experimentally induced asthmatic cat than in healthy cats. Objective quantification of lung heterogeneity and lung volume did not differ among the three groups (P = 0.311, P = 0.181, respectively). Findings supported our hypothesis. Inspiratory breath-hold anesthetized CT scans facilitated discrimination between asthmatic and healthy cats in comparison to unrestrained CT scans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.