Abstract

Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.