Abstract

Recent work has suggested that an additional ≲6.9 eV per baryon of heating in the intergalactic medium is needed to reconcile hydrodynamical simulations with Lyman-α forest absorption line widths at redshift z≃0.1. Resonant conversion of dark photon dark matter into low frequency photons is a viable source of such heating. We perform the first hydrodynamical simulations including dark photon heating and show that dark photons with mass m_{A^{'}}∼8×10^{-14} eV c^{-2} and kinetic mixing ε∼5×10^{-15} can alleviate the heating excess. A prediction of this model is a nonstandard thermal history for underdense gas at z≳3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.