Abstract
Data from the National Oceanic and Atmospheric Administration (NOAA) satellites' Advanced Very High Resolution Radiometers (AVHRRs) represent the longest record (more than 25 years) of continuously available satellite‐based thermal measurements, and have well‐chosen spatial and spectral resolutions. As a consequence, these data are used extensively to develop cloud climatologies. However, for such applications, accurate calibration and intercalibration of both solar and thermal channels of the AVHRRs is necessary so as to homogenize the data obtained from the different AVHRR sensors. AVHRR thermal channels 4 and 5 are routinely used in threshold‐based hierarchical decision‐tree cloud detection and classification algorithms, and therefore an evaluation of the stability of these channels at low temperatures is important. In this letter, the AVHRR channel 4 and 5 brightness temperatures (BTs) are compared at five stations in Antarctica. The data for the period of June, July and August (the coldest months of every year and with minimal atmospheric influence) from 1982 to 2006 were used for the evaluations. The calibration and intercalibration of the thermal channels are found to be very robust. The root mean square errors (RMSEs) range from 2.2 to 3.4 K and the correlation coefficients from 0.84 to 0.95. No apparent artefacts or artificial jumps in the BTs are visible in the data series after changes of sensors. The BTs from the thermal channels of the AVHRRs can be used for preparing cloud climatologies, as their intercalibration is found to be consistent across different afternoon satellites. now at the Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.