Abstract

At the outlet of steep catchments, depositional processes ranging from stream flow to debris flow usually lead to alluvial fan development. Apart from geological and tectonic factors controlling basin sediment availability, several authors highlighted the control role of basin/fan morphometry on fan sedimentary processes. In this framework, the paper was aimed to identify the feeder basin variables that can best differentiate fan processes in Southern Italy. To evaluate the effect of the statistical method on variable selection, we compared logistic regression (LR) and artificial neural network (ANN), the latter not commonly used in fan studies. Alluvial fans were mapped at the mouth of steep V-shaped valleys dissecting the Tyrrhenian coast of northern Calabria, where crystalline-metamorphic and subordinate carbonate rocks crop out. Fans were classified through field survey into two groups: those with (F1), and those without (F0) any debris-flow evidence. Morphometric variables were derived for each basin/fan system. Percentage of lithological units cropping out in the catchments was also considered. Non-parametric statistics revealed that F0 and F1 significantly differ in fan size (area, perimeter and length), main channel slope, lowermost valley width, Melton’s number and geologic index. The relationships between morphometric variables were stronger for F0 than F1. The LR and ANN highlighted the primary control of basin lithology on fan dynamics, followed by basin mean slope. Although ANN outperformed LR in model calibration, both the approaches correctly classified most of the validation samples (> 87%). Alluvial fans with unknown depositional process were classified as belonging to the same group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.