Abstract

Despite the widespread application of nonlinear mathematical models, comparative studies of different models are still a huge task for modellers. This is because a large number of trial and error processes are needed to develop each model, so the workload will be multiplied into an unmanageable level if many types of models are involved. This study presents an efficient approach by using the Gamma test (GT) to select the input variables and the training data length, so that the trial and error workload can be greatly reduced. The methodology is tested in estimating solar radiation at the Brue catchment, UK. Several nonlinear models have been developed efficiently with the aid of the GT, including local linear regression, multi-layer perceptron (MLP), Elman neural network, neural network auto-regressive model with exogenous inputs (NNARX) and adaptive neuro-fuzzy inference system (ANFIS). This work is only feasible within the time and resources constraint, due to the GT in reducing huge workload of the trial and error process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call