Abstract

BackgroundDespite many success stories of genome wide association studies (GWAS), challenges exist in QTL detection especially in datasets with many levels of relatedness. In this study we compared four methods of GWA on a dataset simulated for the 15th QTL-MAS workshop. The four methods were 1) Mixed model analysis (MMA), 2) Random haplotype model (RHM), 3) Genealogy-based mixed model (GENMIX), and 4) Bayesian variable selection (BVS). The data consisted of phenotypes of 2000 animals from 20 sire families and were genotyped with 9990 SNPs on five chromosomes.ResultsOut of the eight simulated QTL, these four methods MMA, RHM, GENMIX and BVS identified 6, 6, 8 and 7 QTL respectively and 4 QTL were common across the methods. GENMIX had the highest power to detect QTL however it also produced 4 false positives. BVS was the second best method in terms of power, detecting all QTL except the one on chromosome 5 with epistatic interaction. Two spurious associations were obtained across methods. Though all the methods considered the full pedigree in the analyses, it was not sufficient to avoid all the spurious associations arising due to family structure.ConclusionsUsing several methods with divergent approaches for GWAS can be useful in gaining confidence on the QTL identified. In our comparison, GENMIX was found to be the best method in terms of power but it needs appropriate correction for multiple testing to avoid the false positives. This study shows that the issues of multiple testing and the relatedness among study samples need special attention in GWAS.

Highlights

  • Despite many success stories of genome wide association studies (GWAS), challenges exist in quantitative trait locus (QTL) detection especially in datasets with many levels of relatedness

  • The effects of the QTL localised by Mixed model analysis (MMA) are given in table 2

  • The 6 QTL detected by MMA together explained 18.4% of the phenotypic variance

Read more

Summary

Introduction

Despite many success stories of genome wide association studies (GWAS), challenges exist in QTL detection especially in datasets with many levels of relatedness. The four methods were 1) Mixed model analysis (MMA), 2) Random haplotype model (RHM), 3) Genealogy-based mixed model (GENMIX), and 4) Bayesian variable selection (BVS). Genome-wide association studies (GWAS) still present major challenges. This is true for samples drawn from a population with multiple levels of relatedness, such as population structure and/or familial relatedness. We compared four different methods of GWAS, 1) Mixed model analysis (MMA); 2) Random haplotype model (RHM); 3) Genealogy-based mixed model (GENMIX) and 4) Bayesian variable selection method (BVS). The above-mentioned methods were compared for power, precision of location estimate, and type I error rate

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.