Abstract

Understanding the mechanism of DNA extension in nanochannels is necessary for interpretation of experiments in nanofluidic channel devices that have been conducted recently with both linear and ring chains. The present article reviews the situation with linear chains and analyses the experimental results and simulations for channel-induced extension (linearization) of ring chains. Results for confined rings indicate a transition between moderate and strong confinement similar to that of linear chains. Owing to stronger self-avoidance in confined rings, the transition and chain extension is shifted relative to linear DNA. We suggest that a relationship similar to that used for the extension of linear chains may also be used for circular DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.