Abstract

This study shows how a lightning protection layer can be designed to effectively mitigate lightning damage in underlying composite structures. A parametric study was performed to characterize critical lightning protection layer properties that improve composite lightning damage resistance. Simulated 50 kA and 200 kA lightning strikes to pitch-based carbon fiber paper (PCFP)-protected AS4/3506 carbon/epoxy composites were considered in this study. The lightning protection characteristics of various PCFP outer layers were assessed by varying in-plane and through-thickness properties: electrical and thermal conductivities, and electrical and thermal gap conductances. The predicted matrix decomposition in the outermost AS4/3506 ply was significantly reduced by increasing the PCFP in-plane electrical conductivity. While predicted lightning damage decreased slightly with a decrease in thermal gap conductance, varying the electrical gap conductance and the in-plane and through-thickness thermal conductivities did not significantly affect the damage development. Among various PCFP properties, the PCFP in-plane electrical conductivity was the most critical factor in reducing thermal damage development (thus, protecting the underlying AS4/3506 laminate). This parametric study demonstrates that it may be possible to tailor lightweight non-metallic lightning protection layers as an effective alternative to traditional metallic projection layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.