Abstract
We have compared light- and heavy-ion irradiation of InGaAs/InAlAs multiple-quantum wells for ultrafast saturable absorption applications. Under heavy-ion impacts, defect clusters were produced, as observed via transmission electronic microscopy. By contrast, in proton-irradiated samples, only point defects were formed. Nonlinear absorption measurements were performed with excitonic resonance pumping. The relaxation time of absorption saturation (minimum value 2 ps) did not depend on the irradiating ion, and was practically independent of the pulse repetition rate (up to 10 GHz) and optical excitation fluence (0.1 mJ/cm2). We conclude that irradiating multiple-quantum wells with light ions is as effective as using heavy ions, when fabricating ultrafast saturable absorber devices operating at high bit rate and near bandedge wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.