Abstract

In general, the temporal structure of stimuli must be considered to account for certain observations made in detection and masking experiments in the audio-frequency domain. Two such phenomena are (1) a heightened sensitivity to amplitude increments with a temporal fringe compared to gated level discrimination performance and (2) lower tone-in-noise detection thresholds using a modulated masker compared to those using an unmodulated masker. In the current study, translations of these two experiments were carried out to test the hypothesis that analogous cues might be used in the envelope-frequency domain. Pure-tone carrier amplitude-modulation (AM) depth-discrimination thresholds were found to be similar using both traditional gated stimuli and using a temporally modulated fringe for a fixed standard depth (ms = 0.25) and a range of AM frequencies (4-64 Hz). In a second experiment, masked sinusoidal AM detection thresholds were compared in conditions with and without slow and regular fluctuations imposed on the instantaneous masker AM depth. Release from masking was obtained only for very slow masker fluctuations (less than 2 Hz). A physiologically motivated model that effectively acts as a first-order envelope change detector accounted for several, but not all, of the key aspects of the data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.