Abstract
Exploration of increased electrode surface area through laser structuring is undertaken to improve performance. While nanosecond lasers offer cost-effective processing, femtosecond lasers achieve a minimal heat effect, excelling in precision. Prior research has mainly focused on changes in electrode performance due to the duration of laser pulses, with insufficient attention to optimizing processability. This study, therefore, aims to compare the processability of active material coating layer in LFP cathodes using both nanosecond and femtosecond lasers. The specimens were subsequently analyzed morphologically for processability using scanning electron microscopy (SEM). Differences in the cross-sectional morphology of LFP cathodes processed by the two types of lasers revealed that nanosecond lasers require a higher pulse energy density for material removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Science: Advanced Materials and Devices
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.