Abstract

We present a new framework for analysis and visualization of large complex networks based on structural information retrieved from their distance k-graphs and B-matrices. The construction of B-matrices for graphs with more than 1 million edges requires massive BFS computations and is facilitated using Cassovary - an open-source in-memory graph processing engine. The approach described in this paper enables efficient generation of expressive, multi-dimensional descriptors useful in graph embedding and graph mining tasks. In experimental section, we present how the developed tools helped in the analysis of real-world graphs from Stanford Large Network Dataset Collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.