Abstract
Chronic exposure to environment noise is associated with sleep disturbance and cardiovascular diseases. Assessment of population exposed to environmental noise is limited by a lack of routine noise sampling and is critical for controlling exposure and mitigating adverse health effects. Land use regression (LUR) model is newly applied in estimating environmental exposures to noise. Machine-learning approaches offer opportunities to improve the noise estimations from LUR model. In this study, we employed random forests (RF) model to estimate environmental noise levels in five Canadian cities and compared noise estimations between RF and LUR models. A total of 729 measurements and 33 built environment-related variables were used to estimate spatial variation in environmental noise at the global (multi-city) and local (individual city) scales. Leave one out cross-validation suggested that noise estimates derived from the RF global model explained a greater proportion of variation (R2: RF = 0.58, LUR = 0.47) with lower root mean squared errors (RF = 4.44 dB(A), LUR = 4.99 dB(A)). The cross-validation also indicated the RF models had better general performance than the LUR models at the city scale. By applying the global models to estimate noise levels at the postal code level, we found noise levels were higher in Montreal and Longueuil than in other major Canadian cities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.