Abstract

The influence of the type of support [activated carbon (AC), HZSM‐5, and γ‐Al2O3] on the performance of Ni‐based catalysts for the catalytic hydrogenolysis (CH) of benzyl phenyl ether (BPE) is investigated. The properties of an Ni‐based catalyst are investigated using diverse characterization techniques. An Ni/AC catalyst exhibits the highest dispersion of Ni atoms by CO pulse. The kinetic studies show that the apparent activation energies (Ea) for CH of BPE increase in the order Ea (Ni/AC) < Ea (Ni/γ‐Al2O3) < Ea (Ni/HZSM‐5), and the initial turnover frequencies follow the order of Ni/AC (64 mol molNisurf −1 h−1) > Ni/γ‐Al2O3 (58 mol molNisurf −1 h−1) > Ni/HZSM‐5 (45 mol molNisurf −1 h−1). All these results prove that the CH activity of BPE is significantly affected by the type of support, and Ni/AC is the highest activity catalyst in CH of the C—O bond of BPE. Toluene and phenol are major products in CH of BPE at a relatively low hydrogen pressure and high temperature. Based on catalytic experiments, a reaction mechanism is proposed, which provides the theoretical basis for converting lignite into high‐value organic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.