Abstract
A mixture of dipeptides (DP) has been proposed as alternatives (to glucose and amino acids, (AA)) osmotic agent in peritoneal dialysis (PD) solutions. DP based solutions may have metabolic and nutritional advantages compared to AA based solutions, as some sources of AA (such as tyrosine) are poorly soluble in water. In a previous study, we compared the kinetic characteristics of DP and AA based solutions; however, the amount of AA differed substantially. The aim of the present study was to compare solutions with almost equal amounts of AA. Methods: The following solutions were used: (1) amino acid (AA) solution containing leucine, valine, lysine, isoleucine, threonine, phenylalanine and histidine (tyrosine was omitted because of its poor solubility), (2) dipeptide (DP) solution containing leucyl-valine, lysyl-isoleucine, threonyl-phenylalanine and histidyl-tyrosine. Sixteen Sprague-Dawley rats were divided in two groups and were subjected to intraperitoneal injection of either 25 mL of AA (n=8) or DP solution. Dialysate and blood samples were taken frequently postinfusion for measurement of AA and DP concentrations as well as AA from DP. Results: Kinetic models were developed for estimation of diffusive mass transport coefficient between peritoneal cavity and blood (K BD ), DP hydrolysis rate coefficient (K H ) and AA clearance in the body (K C ). Calculations showed that K H is about ten times lower than K BD . Thus, hydrolysis rate in peritoneal cavity is much lower than the diffusive transport rate of DP. K BD for AA appeared to be similar to K BD for dipeptides. K C was much higher than K BD for AA. This finding explains the rapid clearance of amino acids from blood. Nevertheless, the AA-based solution resulted in much higher peak concentrations of AA in blood after 120 min of the dwell than AA concentrations achieved following the use of the DP-based solution. Conclusions: Peritoneal transport characteristics ofAA and DP were similar; however their kinetics in blood differs substantially. The DP solution resulted in a less pronounced increase in AA concentrations in blood, suggesting that DP solution could provide AA in a more physiological way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.