Abstract

The presence of colloidal particles in groundwater can enhance contaminant transport by reducing retardation effects and carrying them to distances further than predicted by a conventional advective/dispersive equation with normal retardation values. When colloids exist in porous media and affect contaminant migration, the system can best be simulated as a three-phase medium. Mechanisms of mass transfer from one phase to another by colloids and contaminants can be kinetic or equilibrium-based, depending on the sorption–desorption reaction rate between the aqueous and solid phases. When the rate of sorption between the water phase and the solid phase(s) is not much greater than the rate of change in contaminant concentration in the water phase, kinetic sorption models may better describe the phenomenon. In some cases of modeling one or more mass transfer processes, a useful simplification may be to introduce the local equilibrium assumption. In this study, the local equilibrium assumption for sorption processes on colloidal surfaces (hybrid equilibrium model) was compared with kinetic-based models. Sensitivity analyses were conducted to deduce the effect of major parameters on contaminant transport. The results obtained from the hybrid equilibrium model in predicting the transport of colloid-facilitated groundwater contaminant are very similar to those of the kinetic model, when the point of interest is not at contaminant and colloid source vicinities and the time of interest is sufficiently long for imposed sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.