Abstract
Stroke s a disability main source and main disability source to lost years of disability-adjusted life. Currently the information technology development, especially the field of machine learning has an important role in early warning of various diseases, such as strokes. One of the methods used for stroke classifying is Support Vector Machine (SVM). In this study, we aim to compare several kernel functions in SVM such as linear, radial basis function(RBF), polynomial, and sigmoid for classifying stroke risk. We determine the best kernel based on accuracy, sensitivity, and specificity values. The result of this study shows that linear kernel function gives the best performance in classifying with values of classification accuracy 99.0%, specificity 100.0%, ,and sensitivity 97.0%. Those scores are the highest scores among the other kernel , that means the linear kernel function is the best method for classifying strokes risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of The International Conference on Data Science and Official Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.