Abstract
Four kernel functions of support vector machines (SVM), namely, radial basis function, sigmoid function, linear function and polynomial function, were applied for the prediction of solar cell output power. Two types of SVM model such as epsilon-SRV and nu-SVR were chosen for each kernel function. Measured values of temperature T (°C) and irradiance E (〖kWh.m〗^(-2)) were used as inputs and solar cell output power P (kW) was used as output. The accuracy of each kernel function was evaluated using well known statistical parameters. Radial basis function using nu-SVR and polynomial function using epsilon-SVR provided similar and better results than other kernels. However, polynomial function has taken more analysis run time while radial basis function used more number of support vectors than other kernels. They may be more computationally expensive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Energy Applications and Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.