Abstract

Aim: Comparative metagenomic analysis requires measuring a pairwise similarity between metagenomes in the dataset. Reference-based methods that compute a beta-diversity distance between two metagenomes are highly dependent on the quality and completeness of the reference database, and their application on less studied microbiota can be challenging. On the other hand, de-novo comparative metagenomic methods only rely on the sequence composition of metagenomes to compare datasets. While each one of these approaches has its strengths and limitations, their comparison is currently limited. Methods: We developed sets of simulated short-reads metagenomes to (1) compare k-mer-based and taxonomy-based distances and evaluate the impact of technical and biological variables on these metrics and (2) evaluate the effect of k-mer sketching and filtering. We used a real-world metagenomic dataset to provide an overview of the currently available tools for de novo metagenomic comparative analysis. Results: Using simulated metagenomes of known composition and controlled error rate, we showed that k-mer-based distance metrics were well correlated to the taxonomic distance metric for quantitative Beta-diversity metrics, but the correlation was low for presence/absence distances. The community complexity in terms of taxa richness and the sequencing depth significantly affected the quality of the k-mer-based distances, while the impact of low amounts of sequence contamination and sequencing error was limited. Finally, we benchmarked currently available de-novo comparative metagenomic tools and compared their output on two datasets of fecal metagenomes and showed that most k-mer-based tools were able to recapitulate the data structure observed using taxonomic approaches. Conclusion: This study expands our understanding of the strength and limitations of k-mer-based de novo comparative metagenomic approaches and aims to provide concrete guidelines for researchers interested in applying these approaches to their metagenomic datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.