Abstract

Previous studies show that anurans feed in at least three different ways. Basal frogs have a broad tongue that shortens during protraction and emerges only a short distance from the mouth. Some frogs have long, narrow tongues that elongate dramatically due primarily to inertia from mouth opening, which is transferred to the tongue. A few species have a hydrostatic mechanism that produces tongue elongation during protraction. This functional diversity occurs among frogs that share the same two pairs of tongue muscles. Our study compares the isometric contractile properties of these tongue muscles among three frog species that represent each feeding mechanism. Nerves to the paired protractors and retractors were stimulated electrically in each species to record the force properties, contraction speeds, and fatigabilites of these muscles. Few differences were found in the isometric contractile properties of tongue muscles, and the greatest differences were found in the retractors, not the protractors. We propose that the unique arrangement of the tongue muscles in frogs results in a retractor that may also be coactivated with the protractor in order to produce normal tongue protraction. Inertial effects from body, head, and jaw movements, along with clear differences that we found in passive resistance of the tongues to elongation, may explain much of the behavioral variation in tongue use among species. J. Morphol. 242:107–124, 1999. © 1999 Wiley-Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call