Abstract

AbstractCovalent and reversible cluster molecules were synthesized by an A3B2 type gelation. Crosslinking of three‐arm hydroxyl‐terminated star polymers with 2,4‐toluenediisocyanate gave branched polymers, while the reversible analogue was made by crosslinking of tertiary amine‐terminated star polymers with bis(4‐hydroxy‐3,5‐dinitrophenyl) adipate. Gelation process was followed by static and dynamic light scattering. The extent of reacted groups was measured with UV spectroscopy. Growth of the covalent clusters could be described in terms of percolation scaling laws. The experimental gel point (POH, cr = 0.70) was shifted significantly from the theoretical predicted gel point (POH, cr = 0.50), indicating extensive ring formation during the gelation. The reversible endlinking reaction gave no macroscopic gelation, though increase of the cluster dimensions was observed. Ring formation proved to be an important side reaction in both cases; however, the ring formation ability seems to change in a different manner during the course of a gelation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.